spheres. The neutral point N (see Fig. 8.10) is
defined as the position where the two forces
cancel each other exactly. If ON = r, we have

GMm_4GMm

r? (6R—ry
(6R-1? =4r
6R-r=4+2r
r=2R or-6R.

The neutral point r= - 6R does not concern
us in this example. Thus ON =r = 2R. It is
sufficient to project the particle with a speed
which would enable it to reach N. Thereafter,
the greater gravitational pull of 4M would
suffice. The mechanical energy at the surface
of Mis

Ei=lmU2—GMm— 4GMm
R 5R
At the neutral point N, the speed approaches

zero. The mechanical energy at N is purely
potential.

GMm 4GMm
2R 4R
From the principle of conservation of
mechanical energy

EN:_

1, GM 4GM GM GM

2 R 5R 2R R
or

5 2GM(4 1)
D=

R |5 2
36 MY?
D=
(5=)

A point to note is that the speed of the projectile
is zero at N, but is nonzero when it strikes the
heavier sphere 4 M. The calculation of this speed
is left as an exercise to the students.

8.9

Earth satellites are objects which revolve around
the earth. Their motion is very similar to the
motion of planets around the Sun and hence
Kepler’s laws of planetary motion are equally
applicable to them. In particular, their orbits
around the earth are circular or elliptic. Moon
is the only natural satellite of the earth with a
near circular orbit with a time period of
approximately 27.3 days which is also roughly
equal to the rotational period of the moon about

its own axis. Since, 1957, advances in
technology have enabled many countries
including India to launch artificial earth
satellites for practical use in fields like
telecommunication, geophysics  and
meteorology.

We will consider a satellite in a circular orbit
of a distance (R, + h) from the centre of the earth,
where R_ = radius of the earth. If m is the mass
of the satellite and V its speed, the centripetal
force required for this orbit is

mv?

F(centripetal) = m (8.33)
E

directed towards the center. This centripetal force
is provided by the gravitational force, which is

GmM,

F(gravitation) = m (8.34)

Where M, is the mass of the earth.
Equating R.H.S of Egs. (8.33) and (8.34) and
cancelling out m, we get

2 _ GME
(R, +h) (8.35)
Thus V decreases as h increases. From
equation (8.35),the speed V for h=0 is
V? (h=0) = GM /R; = gR; (8.36)

where we have used the relation
g =GM /R, .
traverses a distance 27(R_+ h) with speed V. It's
time period T therefore is
27(Ry +h) _ 27(Ry + h)*’>
= (8.37)
v JG My
on substitution of value of V from Eq. (8.35).
Squaring both sides of Eq. (8.37), we get
T?=k (R, +h)f (wherelk=471/GM,)) (8.38)

which is Kepler's law of periods, as applied to
motion of satellites around the earth. For a
satellite very close to the surface of earth h can
be neglected in comparison to R, in Eq. (8.38).
Hence, for such satellites, T'is T,, where

T,=2nJR; /g (8.39)

If we substitute the numerical values
g ; 9.8 ms?and R, = 6400 km., we get

6
T,-2% 6.4x10 S
9.8

Which is approximately 85 minutes.

In every orbit, the satellite

T =
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P Example 8.5 The planet Mars has two
moons, phobos and delmos. (i) phobos has
a period 7 hours, 39 minutes and an orbital
radius of 9.4 x 10% km. Calculate the mass
of mars. (ii) Assume that earth and mars
move in circular orbits around the sun,
with the martian orbit being 1.52 times
the orbital radius of the earth. What is

the length of the martian year in days ?

Answer (i) We employ Eq. (8.38) with the sun’s
mass replaced by the martian mass M,

2
5  4n RS

GM

m

an? R®

G T2

m

4x(3.14)% x(9.4)° x10'®
T 6.67x10 1 x(459%60)2

4%(3.14)% x(9.4)3 x10'®

6.67x(4.59x6)2 10
=6.48 x 10%kg.

(if) Once again Kepler's third law comes to our
aid,

m

2 3

Ty _ Rus
2 T 3
Tz Rpgs

where Ry is the mars -sun distance and Ry is
the earth-sun distance.
~Ty =(1.52)%2 x 365
= 684 days

We note that the orbits of all planets except
Mercury, Mars and Pluto are very close to being
circular. For example, the ratio of the semi-
minor to semi-major axis for our Earth is, b/a
= 0.99986. |

Example 8.6 Weighing the Earth : You
are given the following data: g =9.81 ms=,
R;=6.37x10° m, the distance to the moon
R =3.84x10% m and the time period of the
moon’s revolution is 27.3 days. Obtain the
mass of the Earth M in two different ways.

Answer From Eq. (8.12) we have

RZ
ME - gGE

~9.81x(6.37x10°)"

6.67x10° 1!
=5.97x 10°*kg.

The moon is a satellite of the Earth. From

the derivation of Kepler’'s third law [see Eq.
(8.38)]

2 _ 47°R®
G Mg
3

Mp = AR
GT?

4x3.14x3.14%(3.84)° x10**
6.67x10 1 x(27.3% 24 x 60 x 60)

=6.02x10%* kg

Both methods yield almost the same answer,
the difference between them being less than 1%.
|

P> Example 8.7 Express the constant k of
Eq. (8.38) in days and kilometres. Given
k = 10713 s2 m. The moon is at a distance
of 3.84 x 10°km from the earth. Obtain its
time-period of revolution in days.

Answer Given

k=10"1s2m3
1 1
(24 x 60 % 60) | (1/1000)° km® |

=1.33x10-1*d? km™

Using Eq. (8.38) and the given value of k,
the time period of the moon is

T?=(1.33x 10%)(3.84 x 10%°*

T =27.3d <

Note that Eq. (8.38) also holds for elliptical
orbits if we replace (Rg+h) by the semi-major
axis of the ellipse. The earth will then be at one
of the foci of this ellipse.

8.10 ENERGY OF AN ORBITING SATELLITE

Using Eq. (8.35), the kinetic energy of the
satellite in a circular orbit with speed v is

KeE = %mv2
_ GmM,
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Considering gravitational potential energy at
infinity to be zero, the potential energy at
distance (Re+h) from the center of the earth is

_GmM,
(Rg +h)

The K.E is positive whereas the P.E is
negative. However, in magnitude the K.E. is half
the P.E, so that the total E is

GmM,
2(R; +h)

The total energy of an circularly orbiting
satellite is thus negative, with the potential
energy being negative but twice is magnitude of
the positive kinetic energy.

When the orbit of a satellite becomes
elliptic, both the K.E. and P.E. vary from point
to point. The total energy which remains
constant is negative as in the circular orbit case.
This is what we expect, since as we have
discussed before if the total energy is positive or
zero, the object escapes to infinity. Satellites
are always at finite distance from the earth and
hence their energies cannot be positive or zero.

P.E= (8.41)

E=KE+PE=— (8.42)

Example 8.8 A 400 kg satellite is in a
circular orbit of radius 2R; about the
Earth. How much energy is required to
transfer it to a circular orbit of radius 4R ?
What are the changes in the kinetic and
potential energies ?

Answer Initially,
G ME m

Eiz—
4 Rg

While finally

By GMem
8 Ry
The change in the total energy is
AE=E;-E,

_GMgm _(GMg )mRg
- 8Rg | R | 8

A

p- 9MRp _ 9.81x 400x 6.37 x10°
8 8
The kinetic energy is reduced and it mimics
AE, namely, AK=K,—K,=-3.13 x 10°J.
The change in potential energy is twice the
change in the total energy, namely
AV=V, -V, =-6.25x 10°J <

=3.13x10°J

8.11 GEOSTATIONARY AND POLAR

SATELLITES

An interesting phenomenon arises if in we
arrange the value of (RE+ h) such that T in
Eq. (8.37) becomes equal to 24 hours. If the
circular orbit is in the equatorial plane of the
earth, such a satellite, having the same period
as the period of rotation of the earth about its
own axis would appear stationery viewed from
a point on earth. The (R + h) for this purpose
works out to be large as compared to R :

(8.43)

1/3
T? G M,
47

RE+h=[ 3

and for T= 24 hours, hworks out to be 35800 km.
which is much larger than R,. Satellites in a
circular orbits around the earth in the

India’s Leap into Space

India entered the space age with the launching of the low orbit satellite Aryabhattain 1975. In the first
few years of its programme the launch vehicles were provided by the erstwhile Soviet Union. Indigenous
launch vehicles were employed in the early 1980’s to send the Rohini series of satellites into space.
The programme to send polar satellites into space began in late 1980’s. A series of satellites labelled
IRS (Indian Remote Sensing Satellites) have been launched and this programme is expected to continue
in future. The satellites have been employed for surveying, weather prediction and for carrying out
experiments in space. The INSAT (Indian National Satellite) series of satellites were designed and
made operational for communications and weather prediction purposes beginning in 1982. European
launch vehicles have been employed in the INSAT series. India tested its geostationary launch capability
in 2001 when it sent an experimental communications satellite (GSAT-1) into space. In 1984 Rakesh
Sharma became the first Indian astronaut. The Indian Space Research Organisation (ISRO) is the
umbrella organisation that runs a number of centre. Its main lauch centre at Sriharikota (SHAR) is
100 km north of Chennai. The National Remote Sensing Agency (NRSA) is near Hyderabad. Its national
centre for research in space and allied sciences is the Physical Research Laboratory (PRL) at Ahmedabad.




equatorial plane with T = 24 hours are called
Geostationery Satellites. Clearly, since the earth
rotates with the same period, the satellite would
appear fixed from any point on earth. It takes
very powerful rockets to throw up a satellite to
such large heights above the earth but this has
been done in view of the several benefits of many
practical applications.

It is known that electromagnetic waves above
a certain frequency are not reflected from
ionosphere. Radio waves used for radio
broadcast which are in the frequency range 2
MHz to 10 MHz, are below the critical frequency.
They are therefore reflected by the ionosphere.
Thus radio waves broadcast from an antenna
can be received at points far away where the
direct wave fail to reach on account of the
curvature of the earth. Waves used in television
broadcast or other forms of communication have
much higher frequencies and thus cannot be
received beyond the line of sight. A
Geostationery satellite, appearing fixed above the
broadcasting station can however receive these
signals and broadcast them back to a wide area
on earth. The INSAT group of satellites sent up
by India are one such group of Geostationary
satellites widely used for telecommunications in
India.

A Polar satellite. A strip on earth’s surface
(shown shaded) is visible from the satellite
during one cycle. For the next revolution of
the satellite, the earth has rotated a little
on its axis so that an adjacent strip becomes
visible.

Another class of satellites are called the Polar
satellites (Fig. 8.11). These are low altitude (h~
500 to 800 km) satellites, but they go around
the poles of the earth in a north-south direction
whereas the earth rotates around its axis in an
east-west direction. Since its time period is
around 100 minutes it crosses any altitude many
times a day. However, since its height h above
the earth is about 500-800 km, a camera fixed
on it can view only small strips of the earth in
one orbit. Adjacent strips are viewed in the next
orbit, so that in effect the whole earth can be
viewed strip by strip during the entire day. These
satellites can view polar and equatorial regions
at close distances with good resolution.
Information gathered from such satellites
is extremely useful for remote sensing,
meterology as well as for environmental studies
of the earth.

8.12

Weight of an object is the force with which the
earth attracts it. We are conscious of our own
weight when we stand on a surface, since the
surface exerts a force opposite to our weight to
keep us at rest. The same principle holds good
when we measure the weight of an object by a
spring balance hung from a fixed point e.g. the
ceiling. The object would fall down unless it is
subject to a force opposite to gravity. This is
exactly what the spring exerts on the object. This
is because the spring is pulled down a little by
the gravitational pull of the object and in turn
the spring exerts a force on the object vertically
upwards.

Now, imagine that the top end of the balance
is no longer held fixed to the top ceiling of the
room. Both ends of the spring as well as the
object move with identical acceleration g. The
spring is not stretched and does not exert any
upward force on the object which is moving down
with acceleration g due to gravity. The reading
recorded in the spring balance is zero since the
spring is not stretched at all. If the object were
a human being, he or she will not feel his weight
since there is no upward force on him. Thus,
when an object is in free fall, it is weightless
and this phenomenon is usually called the
phenomenon of weightlessness.

In a satellite around the earth, every part
and parcel of the satellite has an acceleration
towards the center of the earth which is exactly



the value of earth’s acceleration due to gravity
at that position. Thus in the satellite everything
inside it is in a state of free fall. This is just as
if we were falling towards the earth from a height.
Thus, in a manned satellite, people inside

experience no gravity. Gravity for us defines the
vertical direction and thus for them there are no
horizontal or vertical directions, all directions are
the same. Pictures of astronauts floating in a
satellite reflect show this fact.

1. Newton’s law of universal gravitation states that the gravitational force of attraction

between any two particles of masses m; and m, separated by a distance r has the
magnitude
FogMims
r

where G is the universal gravitational constant, which has the value 6.672x 107 N m?* kg=.
. If we have to find the resultant gravitational force acting on the particle m due to a
number of masses M,, M,,...M,etc. we use the principle of superposition. Let F;, F,,...F,
be the individual forces due to M;, M,,...M, each given by the law of gravitation. From
the principle of superposition each force acts independently and uninfluenced by the
other bodies. The resultant force Fx is then found by vector addition

n
F. = F,+ Fo+....4F, = 21«:
i=1
where the symbol ¥’ stands for summation.

. Kepler's laws of planetary motion state that

(a) All planets move in elliptical orbits with the Sun at one of the focal points

(b) The radius vector drawn from the sun to a planet sweeps out equal areas in equal
time intervals. This follows from the fact that the force of gravitation on the planet is
central and hence angular momentum is conserved.

(c) The square of the orbital period of a planet is proportional to the cube of the semi-
major axis of the elliptical orbit of the planet

The period T and radius R of the circular orbit of a planet about the Sun are related

by
T2 — ar® ) s
G M,

where M, is the mass of the Sun. Most planets have nearly circular orbits about the
Sun. For elliptical orbits, the above equation is valid if R is replaced by the semi-major
axis, a.

. The acceleration due to gravity.

(a) at a height h above the Earth’s surface

GM

glh) = — £

(Re + h)

GM 2h

= RgE [1 - R_) for h << R;

E E
glh) = g(0)|1 - 2R where g(0) = GA;[E
Ry R



